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Abstract:A generalized estimator representing a class of difference and regression type estimators in double sampling for the estimation of 

finite population variance is proposed, its bias and mean square error are found, and its comparison with the usual estimator of finite population 

variance is made to establish the existence of some superior estimators in the proposed class in the sense of having lesser mean square error. A 

subclass of estimators depending upon optimum values for which the subclass attains the minimum mean square error is investigated and further 

a subclass of estimators depending upon estimated optimum values, attaining the same minimum mean square error of the estimator of optimum 

value is also searched. An empirical study too is included in support of the theoretical findings. 
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I. INTRODUCTION 

 

Auxiliary information is widely used in sampling theory at both the stages of selection as well as estimation. Various sampling 

schemes are designed at the selection stage by using auxiliary information while at the estimation stage it is used by formulating a 

variety of estimators of different population parameters in order to get increased efficiency. Various estimation procedures for the 

estimation of parameters such as ratio, mean, square of mean, total, variance etc., are studied and their properties are analyzed by 

several authors. To improve the estimation procedures over the existing ones in the sense of having lesser risk, prior information 

is utilized in some form or the other. In sampling theory, prior information in the form of some known parameters like mean, 

variance, coefficient of variation etc. of one or several auxiliary variables is extensively used in estimation procedures to develop 

ratio type, product type, difference type or regression type estimators. 

In real life examples, difference and regression type estimators are widely used in areas like engineering sciences, biological 

sciences, medical sciences, geosciences, agriculture sciences, weather forecasting, sensex predictions etc. as  in any system in 

which variable quantities change, it is of interest to examine the effects that some variable exert (or appear to exert) on others. 

There may in fact be a simple functional relationship between variables. In case, we wish to approximate to this functional 

relationship by some simple mathematical function, such as a polynomial, which contains the appropriate variable and which 

graduates to the true function over some limited ranges of the variables involved. In this way we may be able to learn more about 

the underlying true relationship and to appreciate the separate and joint effects produced by changes in certain important 

variables. 

In many surveys, information on an auxiliary variable which is highly correlated with variable under study is readily available 

and can be used for improving sampling design. Stratified sampling and PPS scheme are two such examples in which information 

on auxiliary variable is used. In situation when data on auxiliary variable for individual sampling units are not available but only the 

aggregate value for all the units of auxiliary variable is available, the above two schemes cannot be used. Two such methods of 

estimation when the aggregated data on auxiliary variable can still be used at the time of estimation of the parameters under study 

provided the information on auxiliary variable for the sampled units can easily be obtained are known as Ratio method of 

estimation and Regression method of estimation. 
Though a lot of work has been done on improving upon different type of estimators of population parameters with increased 

efficiency using auxiliary information, some of them are ratio or product type estimators which are widely used in practice for 

their simplicity and easy computability, in contrast difference or regression type estimators, being laborious to compute have not 

been used so extensively. Hence, still there remains enough work to be done in this direction of investigating new estimators with 

increased efficiency in the sense of having lesser mean square error and extending them to classes and analyzing their properties. 
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For a first simple random sample of size 𝑛′ be drawn from a population of size 𝑁 without replacement and a second phase simple 

random sample of size 𝑛 be drawn from the first phase sample of size 𝑛′ without replacement. At first phase sample of size 𝑛′ 

only the auxiliary character 𝑋 is observed and at the second phase sub-sample of size 𝑛, both the study variable 𝑌 and the 

auxiliary character 𝑋 are observed. 

Let (𝑦̅, 𝑥̅) be the sample means of (𝑦, 𝑥) based on second phase sample of size 𝑛. 𝑥′be the sample mean of the first phase 𝑛′ 

sample values on the auxiliary character 𝑋 and ρ be the population correlation coefficient between (𝑌, 𝑋). Further, let 

𝑆𝑦
2 =  

1

𝑁−1
∑ (𝑌𝑖 − 𝑌)2𝑁

𝑖=1 , 

 

𝑆𝑥
2 =  

1

𝑁 − 1
∑(𝑋𝑖 − 𝑋)2

𝑁

𝑖=1

 

 

Where (𝑌𝑖  , 𝑋𝑖) be the values on the variables (𝑌, 𝑋) for the 𝑖𝑡ℎ(𝑖 = 1,2, … , 𝑁) unit of a finite population of size 𝑁 and  

𝑠𝑦
2 =  

1

(𝑛−1)
∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖=1 based on the second phase sample observations (𝑦1 , 𝑦2, … , 𝑦𝑛), be the conventional estimator of the 

population variance 𝜎𝑦
2. 

Also let 

𝑦 =  
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 

𝑥 =  
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 

 

and𝑥′ =  
1

𝑛′
∑ 𝑥𝑖

𝑛′
𝑖=1  

 We know that finite population variance of the study variable 𝑦 is  

𝜎𝑦
2 =  

1

𝑁
∑(𝑌𝑖 − 𝑌)2

𝑁

𝑖=1

 

                                                                                            =  𝜃 − 𝑌
2

                         (1.1) 

where,  𝛳 =  
1

𝑁
∑ 𝑌𝑖

2𝑁
𝑖=1 . 

We can further write  

                                                                                       𝜎𝑦
2 =  𝑌

2
(

𝛳

𝑌
2 − 1)               (1.2)  

where,        (
𝛳

𝑌
2 − 1) > 0   .                                                                                                     

 

Replacing 𝜃and 𝑌
2
 in (1.2) by their some consistent or unbiased estimators, we may get an alternative estimator of the population 

variance 𝜎𝑦
2 . In particular, replacing 𝜃 by its   unbiased estimator 𝛳̂ =  

1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1  , 𝑌

2
 by its consistent estimator 𝑦

2
, the 

proposed generalized double sampling estimator for estimating population variance 𝜎𝑦
2 is  

𝜎̂𝑔𝑑
2 = 𝑔(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂)                               (1.3)    

where  𝑔(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂) satisfying the validity conditions of Taylor’s series expansion and having first, second and third 

order partial derivatives bounded, is a bounded function of (𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂) such that at the point 𝑃 = (𝑌̅, 𝑋̅, 𝑋̅, 𝛳)     

(ⅰ)𝑔(𝑌̅, 𝑋̅, 𝑋̅, 𝛳) = 𝜎𝑦
2                                           (1.4)  

(ⅱ)first order partial derivative of 𝑔(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂) with respect to 𝑦̅ at point 𝑃 is 

𝑔0 =  
𝜕𝑔(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂)

𝜕𝑦̅
]

𝑃

= −2𝑌̅                 (1.5) 

(ⅲ)  𝑔1 = −𝑔2                                                        (1.6)         

  

for first order partial derivatives 

𝑔1 =  
𝜕𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕 𝑥̅
]

𝑃
  ,  𝑔2 =  

𝜕𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕 𝑥̅′ 
]

𝑃
 and 𝑔3 =  

𝜕𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕 𝛳̂
]

𝑃
= 1    

(ⅳ) for second order partial derivatives 𝑔00 =  
𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕𝑦̅2 ]
𝑃

= −2              (1.7)   

𝑔01 = −𝑔02                                (1.8)      
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(v) for second order partial derivatives 𝑔01 =  
𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕 𝑦̅ 𝜕𝑥̅
]

𝑃
 , 𝑔02 =  

𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕 𝑦̅ 𝜕𝑥̅′ 
]

𝑃
 

(vi)𝑔13 = −𝑔23                   (1.9)           

for second order partial derivatives 

𝑔13 =  
𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕 𝑥̅ 𝜕𝛳̂
]

𝑃
, 

𝑔23 =  
𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕 𝑥̅′ 𝜕𝛳̂
]

𝑃
,  

𝑔12 =  
𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕 𝑥̅ 𝜕𝑥̅′
]

𝑃
 , 

𝑔22 =  
𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕𝑥̅′2 ]
𝑃

, 

𝑔33 =  
𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂)

𝜕𝛳̂2 ]
𝑃

  

 

2. BIAS AND MEAN SQUARE ERROR (MSE) OF  𝝈̂𝒈𝒅
𝟐  

Let µ𝑟𝑠 =  
1

𝑁
∑ (𝑌𝑖 − 𝑌)

𝑟
(𝑋𝑖 − 𝑋)

𝑠𝑁
𝑖=1                                   (2.1)        

 

where(𝑌𝑖  , 𝑋𝑖) are the values on the variables (𝑦, 𝑥) for the 𝑖𝑡ℎ(𝑖 = 1,2, … , 𝑁) unit of a finite population of size 𝑁 where 𝑦 

and 𝑥 are the study and auxiliary variables respectively. For simplicity, it is assumed that 𝑁 is large enough as compared to 𝑛 so 

that the finite population correction terms may be ignored 

Let𝑦 =  𝑌̅ + 𝑒0, 𝑥 =  𝑋̅ + 𝑒1,  𝑥′ =  𝑋̅ +  𝑒1
′   and 𝛳̂ = 𝛳 + 𝑒2 

Such that, 

𝐸(𝑒0) =  𝐸(𝑒1) = 𝐸(𝑒1
′) =  𝐸(𝑒2) = 0                              (2.2)      

𝐸(𝑒0
2) =  

𝜇20

𝑛
 , 

𝐸(𝑒1
2) =  

𝜇02

𝑛
 , 

𝐸(𝑒1
′2) =  

𝜇02

𝑛′
 , 

𝐸(𝑒2
2) =  

1

𝑛
 (𝜇40 + 4𝑌̅𝜇30 + 4𝑌̅2𝜇20 − 𝜇20

2 ) ,   

𝐸(𝑒0𝑒 1) =  
𝜇11

𝑛
 , 

𝐸(𝑒0𝑒1
′) =  

𝜇11

𝑛′
 , 

𝐸(𝑒1𝑒1
′) =  

𝜇02

𝑛′
 , 

𝐸(𝑒0𝑒2) =  
1

𝑛
 (𝜇30 +  2𝑌̅𝜇20) , 

𝐸(𝑒1𝑒2) =  
1

𝑛
 (𝜇21 +  2𝑌̅𝜇11) , 

𝐸(𝑒1
′𝑒2) =  

1

𝑛′
(𝜇21 +  2𝑌̅𝜇11)                   (2.3)        

Expanding  𝜎̂𝑔𝑑
2 = 𝑔(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂)  about the point 𝑃 = (𝑌̅, 𝑋̅, 𝑋̅, 𝛳) in third order Taylor’s, we have 
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𝜎̂𝑔𝑑
2 = 𝑔(𝑌̅, 𝑋̅, 𝑋̅, 𝛳) + (𝑦 − 𝑌̅)𝑔0 + (𝑥 − 𝑋)𝑔1 + (𝑥′ − 𝑋)𝑔2 + (𝛳̂ − 𝛳)𝑔3

+ 
1

2!
{(𝑦 −  𝑌̅)2𝑔00 +  (𝑥 −  𝑋̅)2𝑔11 + (𝑥′ −  𝑋̅)2𝑔22 + (𝛳̂ − 𝛳)

2
𝑔33 + 2 (𝑦 −  𝑌̅)(𝑥 −  𝑋̅)𝑔01

+ 2 (𝑦 −  𝑌̅)(𝑥′ −  𝑋̅)𝑔02

+ 2(𝑦 − 𝑌̅)(𝛳̂ − 𝛳)𝑔03+2(𝑥 − 𝑋̅)(𝑥′ − 𝑋̅)𝑔12 + 2(𝑥 −  𝑋̅)(𝛳̂ − 𝛳)𝑔13 + 2(𝑥′ −  𝑋̅)(𝛳̂ − 𝛳)𝑔23}

+
1

3!
{(𝑦 − 𝑌̅)

𝜕

𝜕 𝑦̅
+ (𝑥 − 𝑋̅)

𝜕

𝜕 𝑥̅
+ (𝑥′ − 𝑋̅)

𝜕

𝜕 𝑥̅′ 
+ (𝛳̂ − 𝛳)

𝜕

𝜕 𝛳̂
}

 3

𝑔(𝑦
∗
, 𝑥

∗
, 𝑥′∗, 𝛳̂∗) 

Here first, and second order partial derivatives are already defined in (1.3) to (1.10) and   

𝑦
∗

= 𝑌̅ + ℎ(𝑦 − 𝑌), 𝑥
∗

= 𝑋̅ + ℎ(𝑥 − 𝑋), 𝑥′∗ = 𝑋̅ + ℎ(𝑥′ − 𝑋)𝛳̂∗ = 𝛳 + ℎ(𝛳̂ − 𝛳)  for 0 < ℎ < 1. 

Employing regularity conditions from (1.2) to (1.10) in (2.4), we have 

𝜎̂𝑔𝑑
2 =  𝜎𝑦

2 − 2𝑌(𝑦 −  𝑌) + {(𝑥 − 𝑋) − (𝑥′ − 𝑋)}𝑔1 + (𝛳̂ − 𝛳) +
1

2!
{−2(𝑦 −  𝑌̅)2 +(𝑥 −  𝑋̅)2𝑔11+(𝑥′ −  𝑋̅)2𝑔22 +

(𝛳̂ − 𝛳)
2

𝑔33 + 2{(𝑦 − 𝑌̅)(𝑥 − 𝑋̅) − (𝑦 − 𝑌̅)(𝑥′ −  𝑋̅)}𝑔01 + 2(𝑦 − 𝑌̅)(𝛳̂ − 𝛳)𝑔03 + 2(𝑥 − 𝑋̅)(𝑥′ − 𝑋̅)𝑔12 + 2{(𝑥 −

 𝑋̅)(𝛳̂ − 𝛳) − (𝑥′ −  𝑋̅)(𝛳̂ − 𝛳)}𝑔13} +
1

3!
{(𝑦 −  𝑌̅)

𝜕

𝜕 𝑦̅
+   (𝑥 − 𝑋̅)

𝜕

𝜕 𝑥̅
+ (𝑥′ −  𝑋̅)

𝜕

𝜕 𝑥̅′ 
+ (𝛳̂ −

𝛳)
𝜕

𝜕 𝛳̂
}

3

𝑔(𝑦
∗
, 𝑥

∗
, 𝑥′∗, 𝛳̂∗)            (2.5)        

       or 

(𝜎̂𝑔𝑑
2 − 𝜎𝑦

2) =  −2𝑌(𝑦 −  𝑌) + {(𝑥 − 𝑋) − (𝑥′ − 𝑋)}𝑔1 + (𝛳̂ − 𝛳)

+
1

2!
{−2(𝑦 − 𝑌̅)2 +(𝑥 −  𝑋̅)2𝑔11+(𝑥′ − 𝑋̅)2𝑔22 + (𝛳̂ − 𝛳)

2
𝑔33

+ 2{(𝑦 − 𝑌̅)(𝑥 − 𝑋̅) − (𝑦 − 𝑌̅)(𝑥′ −  𝑋̅)}𝑔01 + 2(𝑦 − 𝑌̅)(𝛳̂ − 𝛳)𝑔03 + 2(𝑥 −  𝑋̅)(𝑥′ − 𝑋̅)𝑔12

+ 2{(𝑥 − 𝑋̅)(𝛳̂ − 𝛳) − (𝑥′ −  𝑋̅)(𝛳̂ − 𝛳)}𝑔13}

+
1

3!
{(𝑦 −  𝑌̅)

𝜕

𝜕 𝑦̅
+  (𝑥 −  𝑋̅)

𝜕

𝜕 𝑥̅
+ (𝑥′ − 𝑋̅)

𝜕

𝜕 𝑥̅′ 
+ (𝛳̂ − 𝛳)

𝜕

𝜕 𝛳̂
}

3

𝑔(𝑦
∗
, 𝑥

∗
, 𝑥′∗, 𝛳̂∗) 

 

(𝜎̂𝑔𝑑
2 − 𝜎𝑦

2) = −2𝑌̅𝑒0 + (𝑒1 − 𝑒1
′)𝑔1 +  𝑒2 +

1

2!
{−2𝑒0

2 +  𝑒1
2𝑔11 + 𝑒′

1
2

𝑔22 + 𝑒2
2𝑔33 + 2(𝑒0𝑒1 − 𝑒0𝑒1

′ )𝑔01 + 𝑒0𝑒2𝑔03 +

2𝑒0𝑒1
′ 𝑔12 + 2(𝑒1𝑒2 − 𝑒1

′ 𝑒2)𝑔13} +
1

3!
{(𝑦 −  𝑌̅)

𝜕

𝜕 𝑦̅
+   (𝑥 − 𝑋̅)

𝜕

𝜕 𝑥̅
+ (𝑥′ −  𝑋̅)

𝜕

𝜕 𝑥̅′ 
+ (𝛳̂ − 𝛳)

𝜕

𝜕 𝛳̂
}

3

𝑔(𝑦
∗
, 𝑥

∗
, 𝑥′∗, 𝛳̂∗)  

        (2.6) 

 

Taking expectation on both sides of (2.6), to the first degree of approximation and retaining terms up to order 𝑂 (
1

𝑛
), we 

have 

𝐸(𝜎̂𝑔𝑑
2 − 𝜎𝑦

2) = 𝐸 {−2𝑌̅𝑒0 + (𝑒1 − 𝑒1
′)𝑔1 +  𝑒2 − 𝑒0

2 +  
𝑒1

2𝑔11

2
+

𝑒′
1
2

𝑔22

2
+

𝑒2
2𝑔33

2
+ (𝑒0𝑒1 − 𝑒0𝑒1

′ )𝑔01 + 𝑒0𝑒2𝑔03 + 𝑒0𝑒1
′𝑔12

+ (𝑒1𝑒2 − 𝑒1
′𝑒2)𝑔13} 

or,  

𝐵𝑖𝑎𝑠(𝜎̂𝑔𝑑
2 ) =  

−𝜇20

𝑛
+ 

𝜇02

2𝑛
𝑔11 +  

𝜇02

2𝑛′
𝑔22 +

1

2𝑛
{𝜇40 + 4𝑌̅𝜇30 + 4𝑌̅2𝜇20 − 𝜇20

2 }𝑔33 + (
𝜇11

𝑛
−

𝜇11

𝑛′
) 𝑔01 +

1

𝑛
(𝜇30 + 2𝑌̅𝜇20)𝑔03 +

𝜇02

𝑛′
𝑔12 + {

1

𝑛
(𝜇21 + 2𝑌̅𝜇11) −

1

𝑛′
(𝜇21 + 2𝑌̅𝜇11)} 𝑔13                                                   (2.7) 

http://www.ijcrt.org/


www.ijcrt.org                                               © 2022 IJCRT | Volume 10, Issue 9 September 2022 | ISSN: 2320-2882 

IJCRT2209163 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b246 
 

Now squaring (2.6) both sides and then taking expectation, the mean square error of 𝜎̂𝑔𝑑
2  to the first degree of approximation and 

retaining terms up to order  𝑂 (
1

𝑛
) is given by, 

𝐸(𝜎̂𝑔𝑑
2 − 𝜎𝑦

2)2 = 𝐸[−2𝑌̅𝑒0 + (𝑒1 − 𝑒1
′)𝑔1 +  𝑒2]2 

𝐸(𝜎̂𝑔𝑑
2 − 𝜎𝑦

2)2 = 𝐸[4𝑌̅2𝑒0
2 + (𝑒1 − 𝑒1

′ )2𝑔1
2 + 𝑒2

2 − 4𝑌̅(𝑒0𝑒1 − 𝑒0𝑒1
′ )𝑔1 − 4𝑌̅𝑒0𝑒2 + 2(𝑒1𝑒2 − 𝑒1

′𝑒2)𝑔1] 

𝐸(𝜎̂𝑔𝑑
2 − 𝜎𝑦

2)2 = 𝐸[4𝑌̅2𝑒0
2+{𝑒1

2+𝑒1
′2 − 2𝑒1𝑒1

′} 𝑔1
2 + 𝑒2

2 − 4𝑌̅(𝑒0𝑒1 − 𝑒0𝑒1
′)𝑔1 − 4𝑌̅𝑒0𝑒2 + 2(𝑒1𝑒2 − 𝑒1

′𝑒2)𝑔1] 

Employing conditions (2.2) to (2.3), the Mean Square Error of 𝜎̂𝑔𝑑
2  becomes, 

𝑀𝑆𝐸(𝜎̂𝑔𝑑
2 ) =

4𝑌̅2𝜇20

𝑛
+

1

𝑛
(𝜇40 + 4𝑌̅𝜇30 + 4𝑌̅2𝜇20 − 𝜇20

2 ) + (
𝜇02

𝑛
−

𝜇02

𝑛′
−

2𝜇02

𝑛′
) 𝑔1

2 − 4𝑌̅ (
𝜇11

𝑛
−

𝜇11

𝑛′
) 𝑔1 −

4𝑌̅

𝑛
(𝜇30 + 2𝑌̅𝜇20)

+ 2 {
1

𝑛
(𝜇21 + 2𝑌̅𝜇11) −

1

𝑛′
(𝜇21 + 2𝑌̅𝜇11)} 𝑔1 

𝑀𝑆𝐸(𝜎̂𝑔𝑑
2 ) =  

𝜇20
2

𝑛
{𝛽2(𝑦) − 1} + 𝜇02 (

1

𝑛
−

1

𝑛′) 𝑔1
2 + (

1

𝑛
−

1

𝑛′) {2(𝜇21 + 2𝑌̅𝜇11) − 4𝑌̅𝜇11}𝑔1   

𝑀𝑆𝐸(𝜎̂𝑔𝑑
2 ) =  

𝜇20
2

𝑛
{𝛽2(𝑦) − 1} + (

1

𝑛
−

1

𝑛′) {𝜇02𝑔1
2 + 2𝜇21𝑔1}    (2.9) 

𝑀𝑆𝐸(𝜎̂𝑔𝑑
2 ) = 𝑀𝑆𝐸(𝑠𝑦

2) + (
1

𝑛
−

1

𝑛′) {𝜇02𝑔1
2 + 2𝜇21𝑔1}    (2.10) 

where, 𝑀𝑆𝐸(𝑠𝑦
2) =

𝜇20
2

𝑛
{𝛽2(𝑦) − 1} is the mean square error of the conventional usual estimator 

𝑠𝑦
2 =  

1

(𝑛−1)
(𝑦𝑖 − 𝑦)2of the population variance 𝜎𝑦

2 

3.OPTIMUM AND ESTIMATED OPTIMUM VALUE 

From (2.10), we can see that the value of 𝑔1 for which 𝑀𝑆𝐸 (𝜎̂𝑔𝑑
2 ) is minimized is given by, 

𝑔1∗ = −
µ21

µ02
              (3.1)                                     

and the minimum mean square error is 

𝑀𝑆𝐸(𝜎̂𝑔𝑑
2 )𝑚𝑖𝑛. =  𝑀𝑆𝐸(𝑠𝑦

2)  − (
1

𝑛
−

1

𝑛′) (
𝜇21

2

µ02
)(3.2) 

Practically, the optimum value 𝑔1∗ in (3.1) may not be available always, hence the alternative is to replace the parameters 

involved therein be their unbiased or consistent estimators and thus get the estimated optimum value. 

Defining𝑚𝑟𝑠 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦)𝑟(𝑥𝑖 − 𝑋)𝑠𝑛

𝑖=1 , replacing µ21 and µ02 by their estimates 

𝜇̂21 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦)2(𝑥𝑖 − 𝑋)𝑛

𝑖=1 and 

𝜇̂20 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖=1  , we get  

𝑔̂1∗ = −
𝜇̂21

𝜇̂02
=  𝐺̂                                                                                                                                                 (3.3)                                                                                                                                                                    

The generalized estimator 𝜎̂𝑔𝑑
2  attains the minimum mean square error in (3.2) if the conditions from (1.4) to (1.10) and (3.1) are 

satisfied for the estimator 𝜎̂𝑔𝑑
2 . 

 This means that the function 𝜎̂𝑔𝑑
2 = 𝑔(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂)as an estimator of  𝜎𝑦

2 should not involve only (𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂)but also 𝑔1∗ 

for the condition (3.1) to be satisfied. Thus we get the resulting estimator as a function 𝑔(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂, 𝑔1∗) satisfying the condition 

(1.4) to (1.10) along with condition (3.1) to attain the minimum mean square error in (3.2). Replacing unknown 

𝑔1∗in𝑔(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂, 𝑔1∗), we get the estimator as a function 𝜎̂𝑔𝑑𝑒
2 = 𝑔∗(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂, 𝐺̂) depending upon estimated optimum value. Let 

(𝐺̂ − 𝐺) = 𝑒3, now expanding 𝑔∗(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂, 𝐺̂)  about the point  𝑃∗ = (𝑌̅, 𝑋̅, 𝑋̅, 𝛳, 𝐺) in Taylor’s series, we have 

𝜎̂𝑔𝑑𝑒
2 = 𝑔∗(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂, 𝐺̂) 
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= 𝑔∗(𝑃∗) + (𝑦̅ − 𝑌̅)𝑔0 + (𝑥̅ − 𝑋̅)𝑔1 + (𝑥′ − 𝑋)𝑔2 + (𝛳 − 𝛳̂)𝑔3 + (𝐺̂ − 𝐺)𝑔4 +
1

2!
{(𝑦 −  𝑌̅)2𝑔00+(𝑥̅ − 𝑋̅)2𝑔11

+ (𝑥′ − 𝑋̅)2𝑔22 + (𝛳̂ − 𝛳)
2

𝑔33 + (𝐺̂ − 𝐺)
2

𝑔44 + 2(𝑦̅ − 𝑌̅)(𝑥̅ − 𝑋̅)𝑔01 + 2 (𝑦 −  𝑌̅)(𝑥′ −  𝑋̅)𝑔02

+ 2(𝑦 −  𝑌̅)(𝛳̂ − 𝛳)𝑔03 + 2(𝑦 − 𝑌̅)(𝐺̂ − 𝐺)𝑔04 + 2(𝑥 − 𝑋̅)(𝑥′ − 𝑋̅)𝑔12 + 2(𝑥 −  𝑋̅)(𝛳̂ − 𝛳)𝑔13

+ 2(𝑥 −  𝑋̅)(𝐺̂ − 𝐺)𝑔14 + 2(𝑥′ −  𝑋̅)(𝛳̂ − 𝛳)𝑔23 + 2(𝑥′ −  𝑋̅)(𝐺̂ − 𝐺)𝑔24+2(𝛳̂ − 𝛳)(𝐺̂ − 𝐺)𝑔34}

+
1

3!
{(𝑦 −  𝑌̅)

𝜕

𝜕𝑦
+ (𝑥 − 𝑋̅)

𝜕

𝜕𝑥
+ (𝑥′ −  𝑋̅)

𝜕

𝜕 𝑥̅′ 
+ (𝛳̂ − 𝛳)

𝜕

𝜕𝛳̂

+ (𝐺̂ − 𝐺)
𝜕

𝜕𝐺̂
}

3

𝑔∗(𝑦̅∗, 𝑥̅∗, 𝑥̅′∗, 𝛳̂∗, 𝐺̂∗)                                                    (3.4) 

 

Where  𝑔∗(𝑃∗) = 𝜎𝑦
2,  𝑔4 =  

𝜕𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂,𝐺̂)

𝜕𝐺̂
]

𝑃∗
= 0 ,   𝑔14 =  

𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂,𝐺̂)

𝜕𝑥𝜕𝐺̂
]

𝑃∗
 ,𝑔24 =  

𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂,𝐺̂)

𝜕𝑥̅′𝜕𝐺̂
]

𝑃∗
 

𝑔34 =  
𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂,𝐺̂)

𝜕𝛳̂𝜕𝐺̂
]

𝑃∗
 , 𝑔44 =  

𝜕2𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂,𝐺̂)

𝜕𝐺̂2 ]
𝑃∗

                                      (3.5) 

or 

𝜎̂𝑔𝑑𝑒
2 − 𝜎𝑦

2 = −2𝑌̅(𝑦 − 𝑌̅) + (𝑥 −  𝑋̅)𝑔1 + (𝑥′ − 𝑋)𝑔2 + (𝛳̂ − 𝛳)𝑔3 + (𝐺̂ − 𝐺)𝑔4 +
1

2!
{−2(𝑦 − 𝑌̅)2+(𝑥̅ − 𝑋̅)2𝑔11 +

(𝑥′ −  𝑋̅)2𝑔22 + (𝛳̂ − 𝛳)
2

𝑔33 + (𝐺̂ − 𝐺)
2

𝑔44 + 2(𝑦̅ − 𝑌̅)(𝑥̅ − 𝑋̅)𝑔01 + 2 (𝑦 − 𝑌̅)(𝑥′ −  𝑋̅)𝑔02 + 2(𝑦 − 𝑌̅)(𝛳̂ − 𝛳)𝑔03 +

2(𝑦 −  𝑌̅)(𝐺̂ − 𝐺)𝑔04 + 2(𝑥 −  𝑋̅)(𝑥′ −  𝑋̅)𝑔12 + 2(𝑥 −  𝑋̅)(𝛳̂ − 𝛳)𝑔13 + 2(𝑥 −  𝑋̅)(𝐺̂ − 𝐺)𝑔14 + 2(𝑥′ −  𝑋̅)(𝛳̂ − 𝛳)𝑔23 +

2(𝑥′ −  𝑋̅)(𝐺̂ − 𝐺)𝑔24+2(𝛳̂ − 𝛳)(𝐺̂ − 𝐺)𝑔34} + ⋯    (3.6)                                                                                      

Squaring both sides of (3.6) and taking expectation, we see that the mean square error 𝐸(𝜎̂𝑔𝑑𝑒
2 − 𝜎𝑦

2)2 = 𝑀𝑆𝐸(𝜎̂𝑔𝑑𝑒
2 ) to the 

first degree of approximation becomes equal to 𝑀𝑆𝐸(𝜎̂𝑔𝑑
2 )𝑚𝑖𝑛.  given by (3.2) if 𝑔4 =  

𝜕𝑔(𝑦̅,𝑥̅,𝑥̅′,𝛳̂,𝐺̂)

𝜕𝐺̂
]

𝑃∗
= 0 and thus the estimator 

taken as a function 𝜎̂𝑔𝑑𝑒
2 = 𝑔∗(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂, 𝐺̂) depending upon estimated optimum values attains the same minimum mean square 

error given by (3.2). 

4. AN  ILLUSTRATION 

Using the data given in Cochran (1977) dealing with paralytic polio cases ‘Placebo’(𝑦) group, paralytic polio cases in ‘not 

inoculated’(𝑥) group, computations of required values of 𝜇𝑟𝑠 have been done and comparison among different estimators of finite 

population variance is made for a simple random sample of size  𝑛 = 15,  we get, 

𝑌̅ = 2.58,𝑋̅ = 8370.6 ,𝜇20 = 9.88 , 𝜇02 = 7.18 ∗ 107,  𝜇40 = 421.96 , 𝜇21 = 93.46 ∗ 103,  

𝜇11 = 19.435294 ∗ 103 

    So that  𝑀𝑆𝐸(𝑠𝑦
2) = 21.61  and 𝑀𝑆𝐸(𝜎̂𝑔𝑑

2 ) = 𝑀𝑆𝐸(𝜎̂𝑔𝑑𝑒
2 ) = 13.422  (4.1) 

 

Whereas the percent relative efficiency (PRE) of the proposed estimators 𝜎̂𝑔𝑑
2  and 𝜎̂𝑔𝑑𝑒

2  over the conventional estimator 𝑠𝑦
2 comes 

out to be  

𝑃𝑅𝐸(𝜎̂𝑔𝑑
2 ) = 𝑃𝑅𝐸(𝜎̂𝑔𝑑𝑒

2 ) = 160.99753                   (4.2) 

Which shows that the proposed estimators 𝜎̂𝑔𝑑
2  are more efficient with high percent relative efficiency over the usual conventional 

estimator 𝑠𝑦
2 of the population variance𝜎𝑦

2. 

 

Comparison with other estimator 

 

RenuChandel (1999) proposed the following estimator;  

𝑠𝑘
2 = 𝑠𝑦

2 + 𝑘 [𝑦̅
𝐶𝑦

𝑠𝑦
− 1] .                 (4.3) 

Considering the same data given in Cochran (1997) dealing with paralytic polio cases ‘Placebo’(𝑦) group, paralytic polio cases in 

‘not inoculated’(𝑥) group, the percent relative efficiency (PRE) of the estimator 𝑠𝑘
2 given by (4.3) over the conventional estimator 

𝑠𝑦
2  as calculated by Chandel comes out to be  

𝑃𝑅𝐸(𝑠𝑘
2) = 130.67269 .          (4.4) 

which shows that the proposed estimators 𝜎̂𝑔𝑑
2  and 𝜎̂𝑔𝑑𝑒

2  are more efficient with high percent relative efficiency over the estimator 

𝑠𝑘
2 of the population variance 𝜎𝑦

2 given in (4.3). 
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IV. RESULTS AND DISCUSSION 
 

(a) From (3.2), any estimator belonging to the class 𝜎̂𝑔𝑑
2  of estimators cannot have its mean square error (to the first degree 

of approximation) less than 
1

𝑛
[𝜇20

2 {𝛽2(𝑦) − 1} − (
1

𝑛
−

1

𝑛′)
𝜇21

2

𝜇02
]             (5.1)                                   

 

(b) The optimum estimator 𝜎̂𝑔𝑑
2  in the sense of having minimum mean square error involves the function 𝑔(𝑦̅, 𝑥̅, 𝑥̅′, 𝛳̂)such 

that 𝑔(𝑌̅, 𝑋̅, 𝑋̅, 𝜃) = 𝜎𝑦
2  and  𝑔1∗ = −

𝜇21

𝜇02
                              (5.2)                                                                         

 

(c) The conventional estimator 𝑠𝑦
2 = ∑

1

(𝑛−1)
(𝑦𝑖 − 𝑦)2𝑛

𝑖=1  of the population variance 𝜎𝑦
2 has its mean square error  

𝑀𝑆𝐸(𝑠𝑦
2) =

1

𝑛
[𝜇20

2 {𝛽2(𝑦) − 1}]    (5.3)            

Further, the proposed estimators 𝜎̂𝑔𝑑
2  and 𝜎̂𝑔𝑑𝑒

2  have their mean square error  

1

𝑛
[𝜇20

2 {𝛽2(𝑦) − 1} − (
1

𝑛
−

1

𝑛′)
𝜇21

2

𝜇02
](5.4)                                                 

From (5.3) and (5.4), it is clear that 𝑀𝑆𝐸(𝜎̂𝑔𝑑
2 ) and 𝑀𝑆𝐸(𝜎̂𝑔𝑑𝑒

2 ) is less than 𝑀𝑆𝐸(𝑠𝑦
2), showing that the proposed 

estimators 𝜎̂𝑔𝑑
2  and 𝜎̂𝑔𝑑𝑒

2 are more efficient than the conventional estimator 𝑠𝑦
2. 

(d) An empirical study in support of theoretical findings as illustration shows that the 𝑃𝑅𝐸(𝜎̂𝑔𝑑
2 ) = 𝑃𝑅𝐸(𝜎̂𝑔𝑑𝑒

2 ) =

160.99753 given by (4.2) indicates that proposed generalized classes of estimators 𝜎̂𝑔𝑑
2  and 𝜎̂𝑔𝑑𝑒

2  are more efficient with 

high percent relative efficiency over the usual estimator 𝑠𝑦
2 of the population variance 𝜎𝑦

2. 

 

(e) A comparative study shows that the 𝑃𝑅𝐸(𝜎̂𝑔𝑑
2 ) = 𝑃𝑅𝐸(𝜎̂𝑔𝑑𝑒

2 ) = 160.99753 given by (4.2) of the proposed generalized 

classes of estimators 𝜎̂𝑔
2 and 𝜎̂𝑔𝑒

2  is greater than the 𝑃𝑅𝐸(𝑠𝑘
2) = 130.67269  given by (4.4) of the estimator of population 

variance proposed by Chandel (1999) which implies that the proposed generalized classes of estimators are better in the 

sense of having lesser mean square error.  
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